Электрохимзащита трубопроводов ГОСТ - Teplotehnika33.ru

Электрохимзащита трубопроводов ГОСТ

Электрохимзащита трубопроводов ГОСТ Оборудование для электрохимической защиты (ЭХЗ) Электрохимзащита применяться для защиты различных металлических

Электрохимзащита трубопроводов ГОСТ

Оборудование для электрохимической защиты (ЭХЗ)

Электрохимзащита применяться для защиты различных металлических сооружений, газопроводов и нефтепроводов, а также для защиты нефтегазопромысловых стационарных сооружений. Электрохимзащита трубопроводов значительно продлевает срок их службы и устраняет самую главную опасность – внеплановые ремонты. Каждый элемент подземных коммуникаций имеет свой ресурс, срок службы. По истечении этого времени, необходимо проводить плановую замену. Однако из-за коррозии (а в старых трубах она неизбежна), расчетные сроки службы значительно корректируются. И только электрохимзащита помогает оградить себя от неожиданностей, сэкономить приличные средства и избежать аварий. В данном разделе представлена, только малая часть продукции электрохимзащиты поставляемой АО «ГСС» (в виде примера), для получения полной информации по продукции электрохимзащиты, необходимо обраться в профильный отдел.

ОБЛАСТЬ ПРИМЕНЕНИЯ ОСНОВНЫХ ВИДОВ ОБОРУДОВАНИЯ ЭХЗ:

Станции катодной защиты

АВТОМАТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ КАТОДНОЙ ЗАЩИТЫ

Унифицированный комплект системы электрохимической защиты УКС ЭХЗ

Предназначен для обеспечение электрохимической защиты подземных газопроводов и др. подземных сооружений от коррозии, согласно проектным решениям. Производство УКС ЭХЗ возможно осуществлять в виде двух и более комплектов, которые изготавливаются согласно отдельным опросным листам для одного объекта. В УКС ЭХЗ могут быть включены оборудование или материалы индивидуального исполнения, их вариативность позволяет удовлетворить любые требования заказчика.

Анодные заземлители глубинные / поверхностные

Протекторы магниевые

Блоки совместной защиты

Контрольно-измерительные пункты КИП

Электроды сравнения медно-сульфатные неполяризующиеся

Изолирующие монолитные муфты (электроизолирующая вставка)

Блоки диодно-резисторные БДР

ОБЛАСТЬ ПРИМЕНЕНИЯ ПРИБОРОВ УЧЕТА И КОНТРОЛЯ ЭХЗ

Индикаторы коррозионных процессов серии ИКП

Анализатор ИКП

Переносной цифровой прибор с автономным питанием ОРИОН ИП-01

ОБЛАСТЬ ПРИМЕНЕНИЯ МАТЕРИАЛОВ ДЛЯ МОНТАЖА ЭХЗ

Термитный карандаш ТУ 1793-004-43750384-2006

Электроизолирующие ложементы марок «ИЗОЛ»

Термитные патроны АС ТУ 1793-003-43750384-2003

Термитная смесь железная ТУ 1793-002-43750384-2006

Стержни электрохимзащиты ТУ 1718-001-56222072-2005

ЭЛЕКТРОИЗОЛИРУЮЩИЙ ЛОЖЕМЕНТ «ЛИТОМЕТ»
ТУ 1469-025-63341682-2017

ОПИСАНИЕ:

электроизолирующий ложемент «Литомет» представляет собой электроизолирующую прокладку, предназначенную для исключения любого электрического контакта между стальными надземными трубопроводами и металлическими опорами, и конструкциями, а также защиты изоляционного покрытия трубопроводов от механических повреждений.

ОБЛАСТЬ ПРИМЕНЕНИЯ:

изделие монтируется на опорах трубопроводов различных типов во всех климатических зонах по ГОСТ 15150-69 при температуре окружающей среды от минус 60˚С до плюс 60˚С.

ПРЕИМУЩЕСТВА:

  • увеличение срока службы надземных трубопроводов за счет прочной конструкции, не подверженной деформации во времени (ползучести);
  • защита антикоррозионной изоляции трубопроводов от механических повреждений при прокладке трубопроводов;
  • защита материала трубы от блуждающих токов;
  • защита материала трубы от снижения токов ЭХЗ;
  • защита материала трубы от повреждений в результате гальванической и щелевой коррозии.

Основные характеристики электроизолирующий ложемент «Литомет»

Габаритные размеры, мм

Применение для опор трубопроводов диаметром, мм

ГОСТ 51164-98: «Трубопроводы стальные магистральные. Общие требования к защите от коррозии»

(утв. постановлением Госстандарта РФ от 23 апреля 1998 г. N 144)

ГОСТ 51164-98 скачали 1972 человека

Текст документа

Государственный стандарт РФ ГОСТ 51164-98
«Трубопроводы стальные магистральные. Общие требования к защите от коррозии»
(утв. постановлением Госстандарта РФ от 23 апреля 1998 г. N 144)

Дата введения 1 июля 1999 г.

1. Область применения

Настоящий стандарт устанавливает общие требования к защите от подземной и атмосферной коррозии наружной поверхности стальных (малоуглеродистые низколегированные стали класса не выше К60) магистральных трубопроводов, транспортирующих природный газ, нефть и нефтепродукты, и отводов от них, трубопроводов компрессорных, газораспределительных, перекачивающих и насосных станций, а также нефтебаз, головных сооружений нефтегазопромыслов (включая резервуары и обсадные колонны скважин), подземных хранилищ газа, установок комплексной подготовки газа и нефти, трубопроводов теплоэлектростанций, соединенных с магистральными трубопроводами (далее — трубопроводы), подземной, подводной (с заглублением в дно), наземной (в насыпи) и надземной прокладках, а также трубопроводов на территории других аналогичных промышленных площадок.

Стандарт не распространяется на теплопроводы и трубопроводы, проложенные в населенных пунктах, коллекторах, зданиях, многолетнемерзлых грунтах и в водоемах без заглубления в дно.

2. Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 9.032-74 ЕСЗКС. Покрытия лакокрасочные. Группы, технические требования и обозначения

ГОСТ 9.048-89 ЕСЗКС. Изделия технические. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов

ГОСТ 9.049-91 ЕСЗКС. Материалы полимерные и их компоненты. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов

ГОСТ 9.050-75 ЕСЗКС. Покрытия лакокрасочные. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов

ГОСТ 9.052-88 ЕСЗКС. Масла и смазки. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов

ГОСТ 9.104-79 ЕСЗКС. Покрытия лакокрасочные. Группы условий эксплуатации

ГОСТ 9.602-89 ЕСЗКС. Сооружения подземные. Общие требования к защите от коррозии

ГОСТ 12.0.004-90 ССБТ. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.004-91 ССБТ. Пожарная безопасность. Общие требования

ГОСТ 12.1.005-88 ССБТ. Общие санитарные гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.008-76 ССБТ. Биологическая безопасность. Общие требования

ГОСТ 12.1.012-90 ССБТ. Вибрационная безопасность. Общие требования

ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности

ГОСТ 12.2.004-75 ССБТ. Машины и механизмы специальные для трубопроводного строительства. Требования безопасности

ГОСТ 12.2.007.0-75 ССБТ. Изделия электротехнические. Общие требования безопасности

ГОСТ 12.3.005-75 ССБТ. Работы окрасочные. Общие требования безопасности

ГОСТ 12.3.008-75 ССБТ. Производство покрытий металлических и неметаллических неорганических. Общие требования безопасности

ГОСТ 12.3.016-87 ССБТ. Строительство. Работы антикоррозионные. Требования безопасности

ГОСТ 12.4.011-89 ССБТ. Средства защиты работающих. Общие требования и классификация

ГОСТ 112-78 Термометры метеорологические стеклянные. Технические условия

ГОСТ 411-77 Резина и клей. Методы определения прочности связи с металлом при отслаивании

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 1759.1-82 Болты, винты, шпильки, гайки и шурупы. Допуски. Методы контроля размеров и отклонений формы и расположения поверхностей

ГОСТ 2678-94 Материалы рулонные кровельные и гидроизоляционные. Методы испытаний

ГОСТ 4233-77 Натрий хлористый. Технические условия

ГОСТ 4650-80 Пластмассы. Метод определения влагонасыщения

ГОСТ 6323-79 Провода с поливинилхлоридной изоляцией для электрических условий. Технические условия

ГОСТ 6433.2-71 Материалы электроизоляционные твердые. Методы определения электрического сопротивления при постоянном напряжении

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 7871-75 Проволока сварочная из алюминия и алюминиевых сплавов. Технические условия

ГОСТ 9070-75 Вискозиметры для определения условной вязкости лакокрасочных материалов. Технические условия

ГОСТ 10821-75 Проволока из платины и платинородиевых сплавов для термоэлектрических преобразователей. Технические условия

ГОСТ 11262-80 Пластмассы. Метод испытания на растяжение

ГОСТ 12652-74 Стеклотекстолит электротехнический листовой. Технические условия

ГОСТ 13073-77 Проволока цинковая. Технические условия

ГОСТ 13518-68 Пластмассы. Метод определения стойкости полиэтилена к растрескиванию под напряжением

ГОСТ 14236-81 Пленки полимерные. Метод испытаний на растяжение

ГОСТ 14254-96 (МЭК 529-89) Изделия электротехнические. Оболочки. Степени защиты. Обозначения. Методы испытаний

ГОСТ 14759-69 Клеи. Метод определения прочности при сдвиге

ГОСТ 15140-78 Материалы лакокрасочные. Методы определения адгезии

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 16336-77 Композиции полиэтилена для кабельной промышленности. Технические условия

ГОСТ 16337-77 Полиэтилен высокого давления. Технические условия

ГОСТ 16783-71 Пластмассы. Метод определения температуры хрупкости при сдавливании образца, сложенного петлей

ГОСТ 17299-78 Спирт этиловый технический. Технические условия

ГОСТ 17792-72 Электрод сравнения хлорсеребряный насыщенный образцовый 2-го разряда

ГОСТ 18299-72 Материалы лакокрасочные. Метод определения предела прочности при растяжении, относительного удлинения при разрыве и модуля упругости

ГОСТ 18300-87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 18599-83 Трубы напорные из полиэтилена. Технические условия

Взамен ГОСТ 18599-83 постановлением Госстандарта РФ от 23 марта 2002 г. N 112-ст c 1 января 2003 г. введен в действие ГОСТ 18599-2001

ГОСТ 22042-76 Шпильки для деталей с гладкими отверстиями. Класс точности В. Конструкция и размеры

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 23932-90 Посуда и оборудование лабораторные стеклянные. Общие технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

Р 51318.14.1-99 (СИСПР 14-1-93) Совместимость технических средств электромагнитная. Радиопомехи индустриальные от бытовых приборов, электрических инструментов и аналогичных устройств. Нормы и методы испытаний

Р 51320-99 Совместимость технических средств электромагнитная. Радиопомехи индустриальные. Методы испытаний технических средств — источников индустриальных помех

3. Общие положения

3.1 Требования настоящего стандарта должны выполняться при проектировании, строительстве, монтаже, реконструкции, эксплуатации и ремонте трубопроводов и являются основой при разработке нормативной документации (НД), используемой при защите от коррозии конкретных видов трубопроводов, утвержденной в установленном порядке и согласованной с Госгортехнадзором России.

3.2 Защита трубопроводов от коррозии должна обеспечивать их безаварийную (по этой причине) работу на весь период эксплуатации.

3.3 При всех способах прокладки, кроме надземной, трубопроводы подлежат комплексной защите от коррозии защитными покрытиями и средствами электрохимической защиты, независимо от коррозионной агрессивности грунта.

3.4 При надземной прокладке трубопроводы защищают от атмосферной коррозии металлическими и неметаллическими покрытиями в соответствии с НД на эти покрытия.

3.5 Участки трубопроводов при надземной прокладке должны быть электрически изолированы от опор. Общее сопротивление этой изоляции при нормальных условиях должно быть не менее 100 кОм на одной опоре.

3.6 Магистральные трубопроводы, температура стенок которых в период эксплуатации ниже 268 К (минус 5 °С), не подлежат электрохимической защите в случае отсутствия негативного влияния блуждающих токов источников переменного (50 Гц) и постоянного тока.

Если в строительный период температура стенок и грунта выше указанной температуры, то они подлежат временной электрохимической защите на срок с момента засыпки до момента стабилизации технологического режима эксплуатации согласно НД.

3.7 На нефтегазопромысловых объектах допускается не применять электрохимическую защиту и (или) защитные покрытия при условии технико-экономического обоснования с учетом коррозионной агрессивности грунтов и срока службы объекта при обеспечении безопасной эксплуатации и исключении экологического ущерба.

Обсадные колонны скважин допускается защищать от коррозии только средствами электрохимической защиты.

3.8 Тип, конструкция и материал защитного покрытия и средства электрохимической защиты трубопроводов от коррозии должны быть определены в проекте защиты, который разрабатывается одновременно с проектом нового или реконструируемого трубопровода.

В проекте должны учитываться возможные изменения условий коррозии трубопровода.

3.8.1 Проекты противокоррозионной защиты для трубопроводов длиной более 100 км должны проходить экспертизу в специализированных организациях на соответствие требованиям государственной стандартизации.

3.9 Каждый вновь построенный трубопровод должен иметь сертификат соответствия качества противокоррозионной защиты государственным стандартам и другой НД. Для эксплуатируемых трубопроводов сертификат соответствия может быть выдан только после комплексного обследования. Сертификаты соответствия выдаются органами по сертификации, внесенными в Госреестр.

3.10 Комплексное обследование трубопроводов с целью определения состояния их защиты от коррозии и коррозионного состояния должно проводиться периодически организациями, имеющими право на выполнение этих работ в соответствии с требованиями настоящего стандарта.

Затраты на комплексное обследование и диагностику противокоррозионной защиты строящихся трубопроводов должны быть предусмотрены в проекте.

3.11 На трубопроводах допускается использовать изолирующие соединения (фланцы, муфты и т.п.) согласно требованиям ГОСТ 9.602.

При применении изолирующих соединений необходимо принять меры, исключающие возникновение вредного влияния электрохимической защиты на электроизолированную часть трубопровода и сооружений, имеющих металлический контакт с ним.

3.12 Технические решения проекта, строительство и эксплуатация комплексной защиты трубопроводов от коррозии не должны оказывать вредного влияния на окружающую среду.

4. Требования к защитным покрытиям

4.1 Конструкция защитных покрытий трубопроводов при их подземной, подводной (с заглублением в дно) и наземной (в насыпи) прокладке в зависимости от вида материалов и условий нанесения покрытий приведены в таблице 1.

Таблица 1 — Конструкция защитных покрытий строящихся и реконструируемых трубопроводов

Защита трубопровода от коррозии

Трубопроводные магистрали сегодня являются наиболее распространенным средством для осуществления доставки носителей энергии. К сожалению, у них есть существенный недостаток – они подвержены образованию ржавчины. Чтобы избежать появления коррозии на магистральных трубопроводах, выполняют катодную защиту. В чем же заключается ее принцип действия?

В наши дни существует много способов защиты водопроводов от коррозии. Суть их проста: металл, из которого изготовлены трубы, вступает в реакцию с определенными растворами и веществами. Результатом процесса становится образование небольшой защитной пенки.

Специалистами выделяются следующие методы защиты трубопроводов от коррозии:

Электрохимическая защита

Достаточно результативный способ защиты металлоконструкций от электрохимической коррозии. Иногда воссоздать лакокрасочную оболочку или защитное оберточное покрытие просто невозможно. Вот в таких случаях и уместно применение электрохимической защиты.

Восстановление покрытия трубопровода, расположенного под землей, или днища морского судна – процесс достаточно трудоемкий и дорогой, а в некоторых случаях и невозможный. Благодаря электрохимической защите изделие будет надежно защищено от коррозии: покрытия подземных трубопроводов, днищ судов, всевозможных резервуаров не будут разрушаться.

  • Используется метод в ситуациях, когда потенциал свободной коррозии пребывает в области усиленного распада основного металла или перепассивации. То есть, когда металлоконструкция интенсивно разрушается.
  • При электрохимической защите к изделию из металла подключают постоянный электрический ток. Благодаря ему на поверхности металлической конструкции образуется катодная поляризация электродов микрогальванических пар и анодные области становятся катодными. А вследствие негативного влияния коррозии разрушается не металл, а анод.
  • Электрохимическая защита может быть анодной или катодной: это будет зависеть от того, в какую сторону сдвинется потенциал металла (в положительную или в отрицательную).

Катодная защита

Метод, достаточно часто используемый для защиты металлоконструкций от коррозии. Применяется в тех случаях, когда металл не имеет склонности к пассивации. Суть метода проста: к изделию подается внешний электроток от отрицательного полюса, который обеспечивает поляризацию катодных участков коррозионных составляющих и поднимает значение потенциала до анодных. После прикрепления положительного полюса источника тока к аноду коррозия защищаемого изделия становится почти нулевой.

Анод требует периодической замены, так как со временем происходит его разрушение.

  • Способы катодной защиты: поляризация от внешнего источника электротока, торможение развития катодного процесса, связь с металлом, имеющим более электроотрицательный потенциал свободной коррозии в определенной среде (протекторная защита).
  • С помощью поляризации от внешнего источника электротока защищают конструкции, находящиеся в почве и в воде, цинк, олово, алюминий и его сплавы, титан, медь и ее сплавы, свинец, высокохромистые, углеродистые, низколегированные и высоколегированные стали.
  • Роль внешнего источника электротока выполняют станции катодной защиты. Их главные составляющие — выпрямитель, токоподвод к защищаемому объекту, анодные заземлители, электрод сравнения и анодный кабель.
  • Катодная защита может быть использована в качестве самостоятельного или дополнительного способа коррозионной защиты.

Основной показатель результативности метода – защитный потенциал. Защитным называют тот потенциал, при котором быстрота коррозионного процесса металлического изделия становится минимальной.

Однако катодная защита обладает определенными недостатками. Один из них – опасность перезащиты. Такой эффект может наблюдаться в случае большого смещения потенциала защищаемого изделия в отрицательную сторону. Вследствие этого разрушаются защитные оболочки, начинается водородное охрупчивание металла, коррозионное растрескивание.

Протекторная защита

Вид катодной защиты, в процессе которого к защищаемому объекту подсоединяют металл с более высоким электроотрицательным потенциалом. При этом разрушается не металлоконструкция, а протектор. Через определенный промежуток времени протектор корродирует и его потребуется заменить на новый.

  • Эффект от протекторной защиты будет заметен только в том случае, если переходное сопротивление между протектором и окружающей средой незначительно.
  • У каждого протектора есть свой радиус защитного действия – предельно возможное расстояние, на которое можно удалить протектор без утраты защитного эффекта. Протекторную защиту применяют, когда ток к объекту подвести трудно, дорого или просто невозможно.
  • С помощью протекторов защищают объекты, находящиеся в нейтральных средах (море, реке, воздухе, почве и т.д.).
  • Материалом для изготовления протекторов служит магний, цинк, железо, алюминий. Металлы в чистом виде не смогут стать эффективной защитой для конструкций, поэтому, изготавливая протекторы, их дополнительно легируют.

Для изготовления железных протекторов используют углеродистые стали или чистое железо.

Анодная защита

Используется для титановых конструкций, объектов из низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся металлов. Метод применяют в хорошо электропроводной коррозионной среде.

При анодной защите происходит сдвиг потенциала защищаемого металла в более положительную сторону. Смещение будет длиться до тех пор, пока не достигнется инертное устойчивое состояние системы. К преимуществам анодной электрохимической защиты можно отнести не только существенное торможение скорости коррозии, но и то, что продукты коррозии не оказываются в производимом продукте и среде.

  • Существует несколько способов реализации анодной защиты: можно сдвинуть потенциал в положительную сторону с помощью источника внешнего электротока или ввести в коррозионную среду окислители, которые способны повысить эффективность катодного процесса на металлической поверхности.
  • Анодная защита с применением окислителей по защитному механизму имеет много общего с анодной поляризацией.
  • При использовании пассивирующих ингибиторов с окисляющими характеристиками (бихроматов, нитратов и т.д.), защищаемая металлическая поверхность под воздействием возникшего тока становится пассивной. Однако эти вещества способны сильно загрязнять технологическую среду.
  • Если ввести в сплав добавки, реакция восстановления деполяризаторов, которая происходит на катоде, пройдет не с таким большим перенапряжением, как на защищаемом металле.
  • При прохождении электротока через защищаемую конструкцию потенциал сдвигается в положительную сторону.
  • В состав установки для анодной электрохимической защиты входит источник внешнего электротока, электрод сравнения, катод и защищаемая конструкция.

Для эффективности метода в той или иной среде используют легкопассивируемые металлы и сплавы. Кроме этого требуется высокое качество выполнения соединительных элементов и постоянное нахождение электрода сравнения и катода в растворе.

Подход к проектированию схемы расположения катодов должен быть индивидуальным для каждого случая.

Электрохимическую анодную защиту нержавеющих сталей используют для хранилищ серной кислоты, аммиачных растворов, минеральных удобрений, различных сборников, цистерн, мерников.

Анодную защиту используют, чтобы предотвратить коррозию ванн химического никелирования и теплообменных установок в изготовлении искусственного волокна и серной кислоты.

Электродренажная защита

Это способ защиты трубопроводов от разрушения с помощью блуждающих токов. Метод предусматривает их дренаж (отвод) с защищаемой конструкции на источник блуждающих токов или специальное заземление.

  • Дренаж бывает прямым, поляризованным и усиленным. Прямой электрический дренаж — это дренажное устройство, имеющее двустороннюю проводимость. При величине тока, превышающей допустимую величину, выйдет из строя плавкий предохранитель. Электрический ток пойдет по обмотке реле, оно включится, после чего произойдет включение звука или света.
  • Прямой электрический дренаж используют для тех трубопроводов, чей потенциал всегда выше потенциала рельсовой сети, служащей для отвода блуждающих токов. Иначе отвод станет каналом для натекания блуждающих токов на трубопровод.
  • Поляризованный электрический дренаж является дренажным устройством, имеющим одностороннюю проходимость. Отличие поляризованного дренажа от прямого заключается в присутствии у первого элемента односторонней проводимости ВЭ. В случае поляризованного дренажа ток течет только в одном направлении — от трубопровода к рельсу. Это не позволяет блуждающим токам натекать на трубопровод по дренажному проводу.
  • Усиленный дренаж используется тогда, когда требуется не только отвести блуждающие токи с трубопровода, но и создать на нем определенную величину защитного потенциала. Усиленный дренаж – это обычная катодная станция. Ее отрицательный полюс подсоединяют к защищаемой конструкции, а положительный — к рельсам электрифицированного транспорта, а не к анодному заземлению.
  • Как только трубопровод введут в эксплуатацию, регулируют работу системы его защиты от коррозии. Если возникает необходимость, осуществляют подключение станций катодной и дренажной защиты и протекторных установок.

Использование какой-либо из технологий защиты промысловых, стальных и прочих видов трубопроводов от коррозии – обязательная составляющая их эксплуатации. Все методы антикоррозийной защиты требуется реализовывать в строгом соответствии с ГОСТом.

ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ

Блог технической поддержки моих разработок

Катодная защита от коррозии. Принцип действия, основные понятия.

Больше 15 лет я разрабатываю станции катодной защиты. Требования к станциям четко формализованы. Есть определенные параметры, которые должны быть обеспечены. А знание теории защиты от коррозии совсем не обязательно. Гораздо важнее знание электроники, программирования, принципов конструирования электронной аппаратуры.

Создав этот сайт, я не сомневался, что когда-нибудь там появится раздел катодная защита. В нем я собираюсь писать о том, что я хорошо знаю, о станциях катодной защиты. Но как-то не поднимается рука писать о станциях, не рассказав, хотя бы коротко, о теории электрохимической защиты. Постараюсь рассказать о таком сложном понятии как можно проще, для не профессионалов.

История развития катодной защиты настолько занимательная глава, что я изложил ее в отдельной статье. Она не имеет практического значения. Просто интересно.

Для того чтобы защитится от коррозии, надо понять, что такое коррозия, природу ее происхождения.

Электрохимическая коррозия.

Коррозию можно определить как реакцию материала с окружающей средой, вызывающую в нем ощутимые изменения.

Изменения – понятие расплывчатое. Поэтому существует понятие коррозионного повреждения, основными признаками которого является нарушение функционирования объекта, например разрушение все той же металлической трубы. Не все реакции ведут к повреждению. Если труба станет коричневой или зеленой, но не будет протекать, это не будет считаться коррозионным повреждением.

Материалы и окружающая среда бывают разными. Бывают разными и реакции между ними. В основе коррозии могут лежать чисто химические реакции. Но вряд ли кого-либо заинтересует коррозия висмута в растворе дигидрофосфата натрия. Гораздо важнее знать о коррозии железной трубы, закопанной в землю.

Так вот, практический интерес имеет коррозия металлических материалов в водных средах, т.е. электрохимическая коррозия. В основе ее лежат реакции, имеющие электрохимическую природу.

В детстве я был любознательным мальчиком. Я проводил опыты по гальваническому осаждению меди на железные предметы, чем удивлял своих одноклассников. Но еще больше я поразил их, когда принес в школу лезвие от безопасной бритвы с вырезанной на нем сквозной надписью. Эффект я усилил сказав, что сделал это лазером. Конечно, я просто покрыл лезвие лаком, иголкой выцарапал надпись, опустил в жестяную банку с раствором соли, подключил электрический ток и немного подождал. Теперь я понимаю, что мои детские опыты были иллюстрацией того, как происходит электрохимическая коррозия и как от нее защититься. (Рассказ о моих детских опытах не художественный вымысел, а чистая правда.)

Итак, объекты процесса электрохимической коррозии:

  • среда – раствор электролита (почва всегда влажная, поэтому это тоже раствор электролита);
  • граница раздела среда-металл;
  • металл.

Все перечисленные объекты способны проводить электрический ток, обладают хорошей электропроводностью. В растворе электролита содержатся анионы и катионы. Они создают электрический ток. Ток протекает через участок металл – раствор электролита. За счет этого тока на границе раздела происходит электрохимическая реакция, на которую могут влиять еще и внешние токи. Влиять они могут по-разному, как усиливать коррозию, так и замедлять ее.

За счет тока на границе образуется разность потенциалов. Ее невозможно измерить. Поэтому измеряют потенциал специального электрода сравнения. Он является своеобразным суммарным показателем электрохимической реакции.

Физическое объяснение электрохимической коррозии выглядит так. В металле присутствуют ионы железа (положительно заряженные) и электроны (с отрицательным зарядом). Оба компонента реагируют с раствором электролита.

  • При положительном токе металл переходит в раствор, что связано с прохождения ионов и вызывает потерю массы металла (растворение металла).
  • При отрицательном токе в раствор проходят электроны, и происходит это без потери массы металла.

В первом случае происходит анодная, а во втором случае — катодная электрохимические реакции. Анодная реакция (растворение металла) вызывает коррозию. Катодная реакция является процессом обратным коррозии и используется в гальванотехнике для нанесения гальванических покрытий.

Принцип действия катодной защиты.

Понятно, что для защиты объекта от коррозии необходимо вызвать катодную реакцию и не допустить анодную. Сделать это можно, если искусственно создать отрицательный потенциал на защищаемом объекте.

Для этого необходимо разместить в среде (почве) анодные электроды и подключить внешний источник тока: минус к объекту защиты, а плюс – к анодным электродам. Ток пойдет по цепи анодный электрод – почвенный электролит – объект защиты от коррозии.

С точки зрения гальванических процессов металлический объект будет катодом, а дополнительный электрод – анодом.

Таким образом, коррозия объекта прекратится. Разрушаться будет только анодный электрод. Он называются анодным заземлением. Анодные электроды делают из инертного материала и периодически меняют.

Станция катодной защиты.

Ток для катодной защиты вырабатывает специальное устройство — станция катодной защиты.

По сути это источник вторичного электропитания, специализированный блок питания. Т.е. станция подключается к питающей сети (как правило

220 В) и вырабатывает электрический ток с заданными параметрами.

Вот пример схемы системы электрохимической защиты подземного газопровода с помощью станции катодной защиты ИСТ-1000.

Станция катодной защиты установлена на поверхности земли, вблизи от газопровода. Т.к. станция эксплуатируется на открытом воздухе, то она должна иметь исполнение IP34 и выше. В этом примере используется современная станция, с контроллером GSM телеметрии и функцией стабилизации потенциала.

В принципе, станции катодной защиты бывают очень разными. Они могут быть трансформаторными или инверторными. Могут быть источниками тока, напряжения, иметь различные режимы стабилизации, различные функциональные возможности.

Станции прошлых лет это громадные трансформаторы с тиристорными регуляторами. Современные станции это инверторные преобразователи с микропроцессорным управлением и GSM телемеханикой.

Выходная мощность устройств катодной защиты, как правило, находится в диапазоне 1 – 3 кВт, но может доходить и до 10 кВт. Станциям катодной защиты и их параметрам посвящена отдельная статья.

Нагрузкой для устройства катодной защиты является электрическая цепь: анодное заземление – почва – изоляция металлического объекта. Поэтому требования к выходным энергетическим параметрам станций, прежде всего, определяют:

  • состояние анодного заземления (сопротивление анод-почва);
  • почва (сопротивление грунта);
  • состояние изоляции объекта защиты от коррозии (сопротивление изоляции объекта).

Все параметры станции определяются при создании проекта катодной защиты:

  • рассчитываются параметры трубопровода;
  • определяется величина защитного потенциала;
  • рассчитывается сила защитного тока;
  • определяется длина защитной зоны;
  • выбирается место установки станции;
  • определяется тип, место расположения и параметры анодного заземления;
  • окончательно рассчитываются параметры станции катодной защиты.

Применение.

Катодная защита от коррозии получила широкое распространение для электрохимической защиты:

  • подземных газопроводов и нефтепроводов;
  • трубопроводов теплосетей и водоснабжения;
  • оболочек электрических кабелей;
  • крупных металлических объектов, резервуаров;
  • подземных сооружений;
  • морских судов от коррозии в воде;
  • стальной арматуры в железобетонных сваях, в фундаментах.

Применение катодной защиты обязательно для газопроводов низкого и среднего давления, магистральных газопроводов, нефтепроводов.

Читать еще:  Течет шланг душа как отремонтироватьОценка статьи:1 звезда2 звезды3 звезды4 звезды5 звезд Загрузка…Сохранить себе в:Ссылка на основную публикацию Похожие публикации

Оставить комментарий

avataravataravataravatar Эта форма комментариев находится по защитой антиспам avatar Эта форма комментариев находится по защитой антиспам avataravataravataravatar Эта форма комментариев находится по защитой антиспам   Подписаться   Уведомление о новые последующие комментарииновые ответы на мои комментарии Популярные статьи Как открутить фильтр грубой очистки водыКак открутить фильтр грубой очистки водыКак открутить фильтр грубой очистки воды Как открутить фильтр грубой очистки водыКак открутить фильтр грубой очистки воды Как открутить фильтр для… 0 28.02.2020 Как работает сливной бачок унитаза с кнопкойКак работает сливной бачок унитаза с кнопкойКак работает сливной бачок унитаза с кнопкой Как работает сливной бачок унитаза с кнопкойКак работает сливной бачок унитаза с кнопкой Сливной механизм для… 0 19.03.2020 Как замаскировать камеру в ваннойКак замаскировать камеру в ваннойКак замаскировать камеру в ванной Как замаскировать камеру в ваннойКак замаскировать камеру в ванной Где спрятать скрытую камеру видеонаблюдения?… 0 08.04.2020 Последние статьи

Разделы сайта

© 2023 Все права защищены. Копирование материалов разрешено только при наличии активной обратной ссылкиokytfbgptwinvk */]]> */]]> */]]> */]]> */]]>-1)?a[i].href.substring(splitOn):””;o.allowfullscreen=(urlParms.indexOf(“fs=0″)>-1)?false:true;o.href=a[i].href.replace(/https?://(?:www.)?youtu(?:.be/([^?]+)??|be.com/watch?(.*(?=v=))v=([^&]+))(.*)/gi,”https://www.youtube.com/embed/$1$3?$2$4&autoplay=1”);}}))});};jQuery(‘a.fancybox-close’).on(‘click’,function(e){e.preventDefault();jQuery.fancybox.close()});};var easy_fancybox_auto=function(){setTimeout(function(){jQuery(‘#fancybox-auto’).trigger(‘click’)},1000);};jQuery(easy_fancybox_handler);jQuery(document).on(‘post-load’,easy_fancybox_handler);jQuery(easy_fancybox_auto);]]>*/]]>Adblock
detectorflat_userVars.winwidth)&&(void 0!==o.html[s].group?flat_userVars.adb?(null==t[“group_”+o.html[s].group]&&(t[“group_”+o.html[s].group]=[]),t[“group_”+o.html[s].group].push(“”==o.html[s].snd&&duplicateMode?o.html[s].fst:o.html[s].snd)):(null==t[“group_”+o.html[s].group]&&(t[“group_”+o.html[s].group]=[]),t[“group_”+o.html[s].group].push(o.html[s].fst)):flat_userVars.adb?t.push(“”==o.html[s].snd&&duplicateMode?o.html[s].fst:o.html[s].snd):t.push(o.html[s].fst));for(r in t)e=”object”==typeof t[r]?e+”n”+t[r][flatPM_random(0,t[r].length-1)]:e+”n”+t[r];if(“”==(e=e.replace(//gm,””).replace(//gm,””).trim()))return void ff(‘[data-flat-id=”‘+o.ID+'”]’).remove();if(void 0===o.how.simple&&void 0===o.how.onсe&&void 0===o.how.iterable||ff(‘[data-flat-id=”‘+o.ID+'”]’).each(function(){-1!==e.indexOf(“go”+”oglesyndication”)||-1!==e.indexOf(“viewBox”)&&-1!==e.indexOf(“svg”)?ff(this).html(e):flatPM_setHTML(this,e)}),void 0!==o.how.popup&&(c=”true”==o.how.popup.cross?void 0!==o.how.popup.timer&&”true”==o.how.popup.timer?’Закрыть через ‘+o.how.popup.timer_count+””:”:””,document.createElement(“div”),p=ff(window),b=ff(“body”),m=void 0===flatPM_getCookie(“flat_modal_”+o.ID+”_mb”)||”false”!=flatPM_getCookie(“flat_modal_”+o.ID+”_mb”),i=”scroll.flatmodal”+o.ID,g=”mouseleave.flatmodal”+o.ID+” blur.flatmodal”+o.ID,l=function(){var t,e,a;void 0!==o.how.popup.timer&&”true”==o.how.popup.timer&&(t=ff(‘.flat__4_modal[data-id-modal=”‘+o.ID+'”] .flat__4_timer span’),e=parseInt(o.how.popup.timer_count),a=setInterval(function(){t.text(–e),eo.how.popup.after&&(p.unbind(i),b.unbind(g),f())}),void 0!==o.how.popup.close_window&&”true”==o.how.popup.close_window&&b.bind(g,function(){p.unbind(i),b.unbind(g),f()})):(v=setTimeout(function(){b.unbind(g),f()},1e3*o.how.popup.after),void 0!==o.how.popup.close_window&&”true”==o.how.popup.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),f()}))),void 0!==o.how.outgoing){function n(){var t,e,a;void 0!==o.how.outgoing.timer&&”true”==o.how.outgoing.timer&&(t=ff(‘.flat__4_out[data-id-out=”‘+o.ID+'”] .flat__4_timer span’),e=parseInt(o.how.outgoing.timer_count),a=setInterval(function(){t.text(–e),eo.how.outgoing.after&&(p.unbind(h),b.unbind(g),d())}),void 0!==o.how.outgoing.close_window&&”true”==o.how.outgoing.close_window&&b.bind(g,function(){p.unbind(h),b.unbind(g),d()})):(v=setTimeout(function(){b.unbind(g),d()},1e3*o.how.outgoing.after),void 0!==o.how.outgoing.close_window&&”true”==o.how.outgoing.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),d()}))}ff(‘[data-flat-id=”‘+o.ID+'”]:not(.flat__4_out):not(.flat__4_modal)’).contents().unwrap()}catch(t){console.warn(t)}},window.flatPM_start=function(){ff=jQuery;var t=flat_pm_arr.length;flat_body=ff(“body”),flat_userVars.init();for(var e=0;eflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_sub

Рейтинг
( Пока оценок нет )
Teplotehnika33.ru
Добавить комментарий