Регулировка системы отопления многоквартирного дома
Teplotehnika33.ru

Отопление и водоснабжение

Регулировка системы отопления многоквартирного дома

Система погодного (климатического) регулирования многоквартирных многоэтажных домов (ЖКХ)

Система погодного регулирования
поможет сэкономить до 35% на отоплении
окупаемость системы от 1 месяца

Звоните:
8 (977) 262-36-80

Автоматизация ЖКХ является актуальной задачей при экономии тепловой энергии для Управляющих компаний в сфере ЖКХ. Система погодного регулирования отопления оправдывает себя только в случае, если в доме уже установлен теплосчетчик (узел учета тепловой энергии)

«Московская объединенная энергетическая компания» (МОЭК) никогда не соблюдает температурный график (сами же его утверждают и не соблюдают) и поэтому завышение температуры теплоносителя наблюдаются повсеместно. Их цель взять как можно больше денег с потребителя, причем любой ценой, поэтому при температуре -5Сº МОЭК дает температуру, какую должны давать при температуре -15Сº и т.д.

Надоело переплачивать? Есть выход!

Система погодного регулирования отопления позволяет экономить до 35% расхода тепловой энергии. Если учесть, что многоквартирный дом (управляющая компания, ЖСК, ТСЖ) платят за отопление в отопительный сезон около 1 миллиона рублей в месяц, то экономию жильцы почувствуют уже через месяц!

Как это работает?

Датчик наружного воздуха (выведенный на теневую сторону улицы) измеряет уличную температуру. Два датчика на подающем и обратном трубопроводе измеряют температуру теплосети. Логический программируемый контроллер вычисляет необходимую дельту и управляя клапаном (КЗР) регулирует скорость потока теплоносителя. С целью защиты от полного перекрывания в клапане предусмотрена защита. Для предотвращения застоя стояков (попадания воздуха) насос внутренней циркуляции циркулирует теплоноситель в системе, через обратный клапан. Узел погодного регулирования также оборудован автоматическим воздухоотводчиком. Если теплосеть не имеет необходимого перепада (что бывает крайне редко), то проблема легко устраняется установкой автоматического балансировочного клапана.

Система имеет полнопроходной байпас и на 100% гарантирует отсутствие перебоев с теплоснабжением в зимнее время.

В случае незапланированной остановки насоса и других аварийных ситуаций, влияющих на автоматическое погодное регулирование отопления, система отправляет SMS через GSM-модуль на мобильный телефон.

Сколько стоит система погодного регулирования?

Цена системы погодного регулирования в большей степени зависит от применяемого оборудования (зарубежное или отечественное). Все плюсы и минусы применения зарубежного или отечественного оборудования можно узнать у специалистов «ВНТ». При запросе цены необходимо выслать распечатку за отопление (месячную, что сдаёте в МОЭК) и указать диаметр труб отопления.

В качестве примера, приведем несколько вариантов стоимости работ по установке погодного регулятора на систему отопления на базе импортного оборудования для многоквартирных домов (300 квартир и более). Цены на начало 2016 г.

  • Насос циркуляционный — 40000 рублей
  • Клапан регулирующий с электроприводом — 60000 рублей
  • Шкаф управления двумя насосами в сборе — 85000 рублей
  • Железо (трубы, муфты, фланцы, краны, клапаны, болты, гайки, фильтр, и др.) — 85000 рублей

Итого: 270000 рублей — оборудование Стоимость монтажных и пусконаладочных работ: 290000 рублей

ИТОГО ПОД КЛЮЧ: 560000 рублей

Коммерческое предложение на установку погодного регулятора на систему отопления частного дома не более 10 квартир. Цены на начало 2016 г.

Данный вариант системы погодного регулирования является полностью автоматический и регулирует тепло в зависимости от температуры наружного воздуха. Она актуальна в небольших жилых домах, где не более 10 квартир.

  • Насос циркуляционный в пределах — 10000 рублей
  • Клапан с приводом в пределах — 60000 рублей (может меньше со скидкой)
  • Электрический шкаф в сборе с термопреобразователями и монтажным набором — 40000 рублей
  • Железо (трубы, муфты, фланцы, краны, клапан, болты, гайки, фильтр, и др.) — 30000 рублей

Итого: 140000 рублей — оборудование Стоимость монтажных и пусконаладочных работ: 160000 рублей.

ИТОГО ПОД КЛЮЧ: 300000 рублей

Экономия от применения автоматической системы погодного регулирования составит около 50%!

В данном варианте системы применяется ручное регулирование с помощью балансировочного клапана.

  • Насос циркуляционный — 10000 рублей
  • Балансировочный клапан — от 30000 рублей (выберете сами по цене и качеству)
  • Железо (трубы, муфты, фланцы, краны, клапан, болты, гайки, фильтр, и др.) — в пределах 10000 рублей

Итого: 50000 рублей — оборудование Стоимость монтажных и пусконаладочных работ: 80000 рублей.

ИТОГО ПОД КЛЮЧ: 130000 рублей

* Цены обоих вариантов указаны при оплате наличными. При оплате по безналичному рачету, стоимость будет на 20% выше.

Настройка и регулировка элеватора и системы отопления здания

Здравствуйте! В данной статье я рассмотрю типовой, скажем так, случай наладки и регулировки внутренней системы отопления здания. А именно, системы отопления с элеваторным узлом смешения. По моим наблюдениям, таких ИТП (тепловых пунктов) примерно процентов 80-85 от общего количества теплоузлов. Про элеватор я писал в этой статье .

Наладка элеваторного узла производится после наладки оборудования ИТП. Что это значит? Это значит, что для нормальной работы элеватора у вас в тепловом пункте должны быть известны рабочие параметры от теплоснабжающей организации по давлению и температуре в подающем трубопроводе (подаче) P1 и T1. То есть, температура в подаче T1 должна соответствовать температуре по утвержденному на отопительный сезон температурному графику отпуска тепла. График такой можно и нужно взять в теплоснабжающей организации, это не тайна за семью печатями. И вообще такой график должен быть у каждого потребителя теплоэнергии в обязательном порядке. Это ключевой момент.

Затем давление в подаче P1. Оно должно быть не меньше необходимого для нормальной работы элеватора. Ну обычно теплоснабжающая организация рабочее давление по подаче все таки выдерживает.

Далее необходимо, чтобы регулятор давления, или регулятор расхода, или дроссельные шайба были правильно отрегулированы, настроены. Или как я обычно говорю, «выставлены». Об этом я как нибудь напишу отдельную статью. Будем считать, что все эти условия соблюдены, и можно приступать к наладке и регулировке элеваторного узла. Как это обычно делаю я?

Первым делом я стараюсь посмотреть проектные данные по паспорту ИТП. Про паспорт ИТП я писал в этой статье . Здесь нас интересуют все параметры, что касаются элеватора. Сопротивление системы, перепад давлений и т.д.

Во вторых, проверяю по возможности соответствие факта и рабочих данных из паспорта ИТП.

В третьих, смотрю и проверяю поэлементно элеватор, грязевики, запорнуюи регулирующую арматуру, манометры, термометры.

В четвертых, смотрю перепад давлений между подачей и обраткой (располагаемый напор) перед элеватором. Он должен соответствовать или быть близким к расчетному, просчитанному по формуле.

В пятых, по манометрам после элеваторного узла, перед домовыми задвижками смотрю потери давления в системе (сопротивление системы). Они не должны превышать 1 м.вст. для зданий до 5 этажей, и 1,5 м.в.ст. для зданий от 5 до 9 этажей. Это в теории. Но и по факту, если у вас потери давления 2 м.в.ст. и выше, то скорее всего, возникнут проблемы. Если у вас шкала делений на манометрах после элеваторного узла в кгс/см2 (более частый случай), то смотреть показания нужно так, если на подаче показания манометра 4,2 кгс/см2, то на обратке должно быть 4,1 кгс/см2. Если же на обратке 4,0 или 3,9 кгс/см2, то это уже тревожный сигнал. Конечно, здесь нужно учитывать, что манометры могут давать погрешность измерений, всякое бывает.

В шестых, проверяю, каков коэффициент смешения элеватора. Про коэффициент смешения я писал здесь . Коэффициент смешения должен соответствовать расчетному, или быть близким по значению к нему. Коэффициент смешения определяем по температурам теплоносителя, которые берем либо с мгновенных показаний теплосчетчика, либо с ртутных термометров. Причем здесь нужно учитывать, что чем больше перепад температур в системе отопления, тем точнее можно просчитать коэффициент смешения. Соответственно, чем меньше перепад температур в системе, тем более высока может быть погрешность в определении коэффициента смешения элеватора.

Нечасто, но бывает так, что разность давлений между подачей и обраткой перед элеватором (располагаемый напор) является недостаточным для обеспечения необходимого коэффициента смешения. Это, я бы так сказал, тяжелый случай. Если теплоснабжающая организация не может (или не хочет) обеспечить вам необходимый перепад давлений, то скорее всего вам придется переходить на схему с циркуляционным насосом.

Наладку элеватора можно считать удовлетворительной и законченной, если принятый размер сопла обеспечивает необходимый расход сетевой воды и коэффициент смешения элеватора.

После наладки элеваторного узла приступают к наладке системы отопления здания. Сначала смотрят схему разводки системы отопления по зданию (если она есть, конечно). Если нет, я просматриваю разводку отопления по зданию визуально. Хотя визуальный осмотр необходим в любом случае. Здесь необходимо узнать, какая разводка , верхняя или нижняя, какие отопительные приборы установлены, есть ли на них регулирующая арматура, есть ли балансировочные краны на стояках отопления, терморегуляторы на отопительных приборах, есть ли устройства для удаления воздуха в верхних точках.

Наладка системы отопления включает в себя проверку и регулировку системы как по горизонтали (распределение теплоносителя по стоякам), так и по вертикали (распределение теплоносителя по этажам).

Сначала проверяем прогрев нижних точек всех стояков. Можно делать это на ощупь. Но в этом случае лучше, чтобы температура воды была 55-65 °С. При более высокой температуре трудно уловить степень прогрева. Нижние точки стояков отопления, как правило, находятся в подвале здания. Хорошо, если на всех стояках установлена хоть какая — то регулирующая арматура. Это вообще необходимо, но к сожалению, не всегда бывает по факту. Отлично, если на стояках установлены балансировочные клапаны. Тогда перегревающиеся стояки прикрываем регулирующей арматурой.

Но лучше, конечно, проверку распределения воды по стоякам производить с помощью замеров температур в подаче и обратке. Хотя это более трудоемкий вариант.

Так, например, температуру обратки T2 в двухтрубной системе следует принимать с учетом остывания температуры воды в подаче. Если по графику T1 = 68 °С, а фактическиT1 = 62 °С, T2 по графику равна 53 °С. В этом случае расчетная температура T2 = 62- (68-53) = 47 °С, а не 53 °С.

Вообще, в результате регулировки по стоякам должна быть примерно одинаковая разность температур воды у входа и выхода ее из всех стояков.

Далее производится регулировка по отдельным отопительным приборам. У меня на многих объектах установлены ручные прямые регулирующие краны.

Очень хорошая штука для регулировки. Еще лучше, если у вас установлены на отопительных приборах терморегуляторы. Тогда регулировка производится в автоматическом режиме. Замеры температуры отопительных приборов проводим с помощью пирометра.

Наладка элеваторного узла и системы отопления считается удовлетворительной, если достигнута равномерная температура отапливаемых помещений здания.

На тему устройства и настройки тепловых пунктов я написал книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно. Вот содержание книги:

1. Введение
2. Устройство ИТП, схема без элеватора
3. Устройство ИТП, элеваторная схема
4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.
5. Заключение

Просмотреть книгу можно по ссылке ниже:

Устройство ИТП (тепловых пунктов) зданий

Как производится регулировка системы отопления многоквартирного дома и многоэтажного здания

Проектированием системы отопления в многоэтажных, многоквартирных зданиях занимаются специальные проектные организации, которые в своей проектной работе руководствуются такими нормативными документами, как ГОСТы, ОСТЫ, ТУ, СНИПы и санитарно-технические нормы.

Читать еще:  Промывка системы отопления лимонной кислотой

Согласно требованиям некоторых из них, температура в жилых помещениях должна быть устойчивой в пределах двадцати-двадцати двух градусов тепла. А относительная влажность воздуха 40-30 %. Только при соблюдении таких параметров можно обеспечить комфортные условия для проживания людей.

В основе проектирования системы отопления и регулировки лежит выбор теплоносителя, который обусловлен рядом факторов, включая такой, как доступность и возможность подключения к нему системы отопления домостроения в районе нахождения объекта.

Виды регулировки систем отопления

Регулировка системы отопления многоквартирного дома может осуществляться путем использования в системе труб различного диаметра. Как известно, скорость прохождения и давление жидкости и пара в трубопроводе зависят от диаметра отверстия трубы. Это и позволяет осуществлять регулировку давления в системе путём комбинирования труб с различным диаметром друг с другом.

Трубы с диаметром 100 мм обычно ставятся на входе в подвальных помещениях домов.

Это максимальный диаметр труб, используемый в системе отопления. В подъездах для распределения тепла используются трубы диаметром 76-50 мм. Выбор зависит от размеров здания. Монтаж стояков производится из труб диаметром 20 мм. Концевики «лежаков» закрываются шаровыми кранами с диаметром 32 мм, которые устанавливаются обычно на расстоянии 30 см от крайнего стояка.

Однако такая регулировка системы отопления здания не позволяет эффективно выравнивать гибкое давление в системе. Таким образом, температура в жилых помещениях верхних этажей заметно понижается. Поэтому используется гидравлическая система отопления, которая включает в себя циркуляционные вакуумные насосы и автоматические системы регулирования давления.

Их монтаж производится в коллекторе каждого здания. При этом меняется схема разводки теплоносителя по подъездам и этажам.

При этажности домостроения выше двух этажей использование системы с подкачкой для циркуляции воды обязательно. Регулировка системы отопления многоквартирных зданий осуществляется чаще всего вертикальными системами водяного отопления, которые называются однотрубными.

Недостатки однотрубной системы

К недостаткам можно отнести то, что при такой системе невозможно производить учёт расхода тепла в каждой квартире. А, следовательно, произвести индивидуальный расчёт оплаты за фактическое потребление тепловой энергии. К тому же, при такой системе сложно поддерживать температуру воздуха одинаковую во всех жилых помещениях здания.

Именно поэтому используются другие системы поквартирного отопления, которые устроены по-другому и предусматривают установку счётчиков тепловой энергии в каждой квартире.

В настоящее время существуют различные системы поквартирного отопления. Однако пока устраиваются они в многоэтажных зданиях крайне редко. Это связано с рядом причин. В частности, с тем, что такие системы обладают невысокой гидравлической и тепловой устойчивостью.

Чаще всего в многоэтажных, жилых зданиях используется так называемое центральное отопление.

Теплоноситель при таком отоплении поступает к домостроению от городской ТЭЦ.

В последние годы при строительстве новых жилых домов используется автономное отопление. При таком способе индивидуального отопления, котельная устанавливается непосредственно в подвальном или чердачном помещении многоэтажки. В свою очередь системы отопления делятся на открытые и закрытые. Первые предусматривают разделение подачи горячей воды для жильцов на отопление и другие нужды, а в другом — только на отопление.

Требования к регулировке системы отопления

Требования к системам отопления определяются проектной документацией. Регулировка системы отопления многоквартирного дома производится в соответствии с параметрами, определенными этой документацией. Особой сложностью она не обладает. Системы отопления снабжены терморегуляторами на радиаторах, а также теплосчетчиками, балансировочными клапанами как автоматического, так и ручного регулирования.

Регулировка радиаторов отопления не требует использования специального инструмента.

Производится непосредственно жильцами. Все остальные регулировки производятся обслуживающим систему персоналом.

Настройка и регулировка элеватора и системы отопления здания

Здравствуйте! В данной статье я рассмотрю типовой, скажем так, случай наладки и регулировки внутренней системы отопления здания. А именно, системы отопления с элеваторным узлом смешения. По моим наблюдениям, таких ИТП (тепловых пунктов) примерно процентов 80-85 от общего количества теплоузлов. Про элеватор я писал в этой статье .

Наладка элеваторного узла производится после наладки оборудования ИТП. Что это значит? Это значит, что для нормальной работы элеватора у вас в тепловом пункте должны быть известны рабочие параметры от теплоснабжающей организации по давлению и температуре в подающем трубопроводе (подаче) P1 и T1. То есть, температура в подаче T1 должна соответствовать температуре по утвержденному на отопительный сезон температурному графику отпуска тепла. График такой можно и нужно взять в теплоснабжающей организации, это не тайна за семью печатями. И вообще такой график должен быть у каждого потребителя теплоэнергии в обязательном порядке. Это ключевой момент.

Затем давление в подаче P1. Оно должно быть не меньше необходимого для нормальной работы элеватора. Ну обычно теплоснабжающая организация рабочее давление по подаче все таки выдерживает.

Далее необходимо, чтобы регулятор давления, или регулятор расхода, или дроссельные шайба были правильно отрегулированы, настроены. Или как я обычно говорю, «выставлены». Об этом я как нибудь напишу отдельную статью. Будем считать, что все эти условия соблюдены, и можно приступать к наладке и регулировке элеваторного узла. Как это обычно делаю я?

Первым делом я стараюсь посмотреть проектные данные по паспорту ИТП. Про паспорт ИТП я писал в этой статье . Здесь нас интересуют все параметры, что касаются элеватора. Сопротивление системы, перепад давлений и т.д.

Во вторых, проверяю по возможности соответствие факта и рабочих данных из паспорта ИТП.

В третьих, смотрю и проверяю поэлементно элеватор, грязевики, запорнуюи регулирующую арматуру, манометры, термометры.

В четвертых, смотрю перепад давлений между подачей и обраткой (располагаемый напор) перед элеватором. Он должен соответствовать или быть близким к расчетному, просчитанному по формуле.

В пятых, по манометрам после элеваторного узла, перед домовыми задвижками смотрю потери давления в системе (сопротивление системы). Они не должны превышать 1 м.вст. для зданий до 5 этажей, и 1,5 м.в.ст. для зданий от 5 до 9 этажей. Это в теории. Но и по факту, если у вас потери давления 2 м.в.ст. и выше, то скорее всего, возникнут проблемы. Если у вас шкала делений на манометрах после элеваторного узла в кгс/см2 (более частый случай), то смотреть показания нужно так, если на подаче показания манометра 4,2 кгс/см2, то на обратке должно быть 4,1 кгс/см2. Если же на обратке 4,0 или 3,9 кгс/см2, то это уже тревожный сигнал. Конечно, здесь нужно учитывать, что манометры могут давать погрешность измерений, всякое бывает.

В шестых, проверяю, каков коэффициент смешения элеватора. Про коэффициент смешения я писал здесь . Коэффициент смешения должен соответствовать расчетному, или быть близким по значению к нему. Коэффициент смешения определяем по температурам теплоносителя, которые берем либо с мгновенных показаний теплосчетчика, либо с ртутных термометров. Причем здесь нужно учитывать, что чем больше перепад температур в системе отопления, тем точнее можно просчитать коэффициент смешения. Соответственно, чем меньше перепад температур в системе, тем более высока может быть погрешность в определении коэффициента смешения элеватора.

Нечасто, но бывает так, что разность давлений между подачей и обраткой перед элеватором (располагаемый напор) является недостаточным для обеспечения необходимого коэффициента смешения. Это, я бы так сказал, тяжелый случай. Если теплоснабжающая организация не может (или не хочет) обеспечить вам необходимый перепад давлений, то скорее всего вам придется переходить на схему с циркуляционным насосом.

Наладку элеватора можно считать удовлетворительной и законченной, если принятый размер сопла обеспечивает необходимый расход сетевой воды и коэффициент смешения элеватора.

После наладки элеваторного узла приступают к наладке системы отопления здания. Сначала смотрят схему разводки системы отопления по зданию (если она есть, конечно). Если нет, я просматриваю разводку отопления по зданию визуально. Хотя визуальный осмотр необходим в любом случае. Здесь необходимо узнать, какая разводка , верхняя или нижняя, какие отопительные приборы установлены, есть ли на них регулирующая арматура, есть ли балансировочные краны на стояках отопления, терморегуляторы на отопительных приборах, есть ли устройства для удаления воздуха в верхних точках.

Наладка системы отопления включает в себя проверку и регулировку системы как по горизонтали (распределение теплоносителя по стоякам), так и по вертикали (распределение теплоносителя по этажам).

Сначала проверяем прогрев нижних точек всех стояков. Можно делать это на ощупь. Но в этом случае лучше, чтобы температура воды была 55-65 °С. При более высокой температуре трудно уловить степень прогрева. Нижние точки стояков отопления, как правило, находятся в подвале здания. Хорошо, если на всех стояках установлена хоть какая — то регулирующая арматура. Это вообще необходимо, но к сожалению, не всегда бывает по факту. Отлично, если на стояках установлены балансировочные клапаны. Тогда перегревающиеся стояки прикрываем регулирующей арматурой.

Но лучше, конечно, проверку распределения воды по стоякам производить с помощью замеров температур в подаче и обратке. Хотя это более трудоемкий вариант.

Так, например, температуру обратки T2 в двухтрубной системе следует принимать с учетом остывания температуры воды в подаче. Если по графику T1 = 68 °С, а фактическиT1 = 62 °С, T2 по графику равна 53 °С. В этом случае расчетная температура T2 = 62- (68-53) = 47 °С, а не 53 °С.

Вообще, в результате регулировки по стоякам должна быть примерно одинаковая разность температур воды у входа и выхода ее из всех стояков.

Далее производится регулировка по отдельным отопительным приборам. У меня на многих объектах установлены ручные прямые регулирующие краны.

Очень хорошая штука для регулировки. Еще лучше, если у вас установлены на отопительных приборах терморегуляторы. Тогда регулировка производится в автоматическом режиме. Замеры температуры отопительных приборов проводим с помощью пирометра.

Наладка элеваторного узла и системы отопления считается удовлетворительной, если достигнута равномерная температура отапливаемых помещений здания.

На тему устройства и настройки тепловых пунктов я написал книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно. Вот содержание книги:

1. Введение
2. Устройство ИТП, схема без элеватора
3. Устройство ИТП, элеваторная схема
4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.
5. Заключение

Просмотреть книгу можно по ссылке ниже:

Устройство ИТП (тепловых пунктов) зданий

Как устроено теплоснабжение многоквартирного дома

На территории России обычно используется система центрального отопления многоквартирного дома, теплоноситель в которую поступает от городской котельной или ТЭЦ. При этом водяные контуры обустраивают по разным схемам, поскольку они бывают однотрубными и двухтрубными. Обычно потребителей тепла мало интересуют подобные нюансы, но при необходимости произвести ремонт квартиры и поменять старые батареи на новые современные отопительные радиаторы в подобных тонкостях владельцам жилой недвижимости желательно разбираться.

Читать еще:  Как задекорировать батареи отопления своими руками?

Индивидуальное отопление в жилых домах

Стоимость автономного отопления в многоквартирном доме немаленькая, поэтому предпочтительнее вводить в строй одну мощную котельную, способную обеспечить теплом и горячей водой жилой микрорайон.

Центральное отопление многоквартирных домов

По магистральным трубопроводам теплоноситель из центральной котельной подается на тепловой узел многоквартирного дома и дальше распределяется по квартирам. Дополнительную регулировку степени подачи горячей воды в таком случае производят непосредственно на тепловом пункте, для чего используют циркулярные насосы. Данный способ подачи теплоносителя конечному потребителю называют независимым (подробнее: «Централизованное отопление это одновременно плюсы и минусы»).

Кроме этого в многоквартирных домах используют зависимые отопительные системы. В таком случае теплоноситель транспортируют в квартирные батареи без дополнительного распределения прямо с ТЭЦ. При этом температура воды находится вне зависимости от того, подается она через распределительный пункт или непосредственно потребителям.

Виды систем отопления многоквартирного дома бывают открытыми или закрытыми (детальнее: «Открытая и закрытая система теплоснабжения — преимущества и недостатки в сравнении»).

В последнем варианте теплоноситель с ТЭЦ или центральной котельной после попадания в распределительный пункт подается раздельно на отопительные радиаторы и на горячее водоснабжение. В открытых системах подобное разделение конструкцией не предусмотрено и подогретая вода для нужд жильцов поставляется с магистральной трубы, поэтому потребители вне отопительного сезона остаются без горячего водоснабжения, что вызывает немало нареканий в адрес коммунальных служб. Читайте также: «Счетчик тепла на батарею».

Виды подключений к системам отопления

Схему централизованного контура передвижения теплоносителя невозможно изменить. По этой причине регулировка отопления в многоквартирном доме доступна только в поквартирном варианте. Довольно редко, но иногда встречаются ситуации, когда собственными силами жильцы дома переделывают в нем отопительную систему, однако неизменными остаются принципы циркуляции теплоносителя, при которых задействуют одну или две трубы. Читайте также: «Независимая система отопления».

Читать еще:  Немецкие полипропиленовые трубы для отопления

Однотрубная отопительная система

Однотрубное теплоснабжение многоквартирного дома имеет массу недостатков, главным среди которых являются значительные потери тепла в процессе транспортировки горячей воды. В данном контуре теплоноситель подают снизу вверх, после чего он попадает в батареи, отдает тепло и возвращается назад в ту же самую трубу. К конечным потребителям, проживающим на верхних этажах, прежде горячая вода доходит в еле теплом состоянии.

Бывают случаи, когда однотрубную систему еще дополнительно упрощают, стараясь увеличить температуру теплоносителя в радиаторах. Для этого батарею врезают напрямую в трубу. В итоге, кажется, что радиатор является ее продолжением. Но от подобного подключения больше тепла получают только первые пользователи системы, а к последним потребителям вода доходит практически холодной (прочитайте также: «Система поквартирного отопления — характеристика»). Кроме этого однотрубное теплоснабжение многоквартирного дома делает невозможной регулировку радиаторов – после уменьшения подачи теплоносителя в отдельной батарее также снижается водоток по всей длине трубы.

Еще одним недостатком такого теплоснабжения является невозможность замены радиатора в отопительный сезон без слива воды со всей системы. В подобных случаях необходима установка перемычек, благодаря чему появляется возможность отключить батарею, а теплоноситель направить по ним.

Таким образом, с одной стороны в результате установки контура однотрубной отопительной системы получается экономия, а с другой – возникают серьезные проблемы относительно распределения тепла по квартирам. В них жильцы зимой мерзнут.

Двухтрубная отопительная система

Открытая и закрытая система отопления многоквартирного дома может быть двухтрубной (см. фото), позволяющей сохранять температуру теплоносителя в радиаторах, расположенных в квартирах на всех этажах. Устройство двухтрубного контура подразумевает, что остывшая в радиаторе горячая вода не попадает назад в ту же трубу. Она поступает в так называемую «обратку» или в возвратный канал. Читайте также: «Элеваторный узел системы отопления: что это такое».

Не имеет значения, каким образом подключена батарея – к трубе стояка или лежака, теплоноситель имеет постоянную температуру на всем пути его транспортировки по трубам подачи.

Одним из важных преимуществ двухтрубных водяных контуров считается регулировка системы отопления многоквартирного дома на уровне каждой отдельной батареи путем установки на ней кранов с термостатом (прочитайте также: «Регулировка системы отопления — подробности из практики»). В результате в квартире обеспечивается автоматическое поддержание нужного температурного режима. В двухтрубном контуре доступно использование радиаторов отопления как с подключением нижним, так и с боковым. Также можно применять разное движение теплоносителя — тупиковое и попутное.

Горячее водоснабжение в системах отопления

ГВС в многоэтажных домах обычно является централизованным, при этом вода нагревается в котельных. Подключают горячее водоснабжение от контуров отопления, причем и от однотрубных, и от двухтрубных. Температура в кране с горячей водой по утрам бывает теплой или холодной, что зависит от количества магистральных труб. Если имеется однотрубное теплоснабжение многоквартирного дома высотой в 5 этажей, то при открытии горячего крана сначала в течение полминуты из него пойдет холодная вода.

Причина кроется в том, что ночью редко кто из жильцов включает кран с горячим водоснабжением, и теплоноситель в трубах остывает. В результате наблюдается перерасход ненужной остывшей воды, поскольку она сливается напрямую в канализацию.

В отличие от однотрубной системы в двухтрубном варианте циркуляция горячей воды происходит непрерывно, поэтому вышеописанной проблемы с ГВС там не возникает. Правда, в некоторых домах через систему горячего водоснабжения закольцовывают стояк с трубами – полотенцесушителями, которые даже в летнюю жару горячие.

Многих потребители интересует проблема с ГВС после того, как завершился отопительный сезон. Иногда горячая вода пропадает на длительное время. Дело в том, что коммунальные службы обязаны соблюдать правила отопления многоквартирных домов, согласно которым необходимо производить постотопительные испытания систем теплоснабжения (прочитайте также: «Акт гидравлического испытания системы отопления и трубопроводов»). Такая работа не выполняется быстро, особенно если обнаружатся повреждения, которые нужно устранить.

В летний период испытаниям подвергается вся система, обеспечивающая центральное отопление в многоквартирном доме. Коммунальные службы проводят текущие и капитальные ремонтные работы на теплотрассе, отключая при этом на ней отдельные участки. Накануне предстоящего отопительного сезона отремонтированная тепловая магистраль повторно подвергается испытаниям (подробнее: «Правила подготовки к отопительному сезону жилого дома»).

Особенности подачи тепла в многоквартирном доме, детали на видео:

Радиаторы для систем отопления многоэтажек

Привычными для многих жильцов многоэтажных домов являются чугунные радиаторы, которые ранее использовались не один десяток лет. При необходимости заменить такую отопительную батарею ее демонтируют и устанавливают аналогичную, которую требует система отопления в многоквартирном доме. Такие радиаторы для централизованных отопительных систем считаются лучшим решением, поскольку они без проблем выдерживают достаточно высокое давление. В паспорте к чугунной батарее указываются две цифры: первая из них говорит о рабочем давлении, а вторая обозначает испытательную (опрессовочную) нагрузку. Обычно это значения — 6/15 или 8/15.

Чем выше жилой дом, тем больше величина рабочего давления. В девятиэтажных зданиях оно достигает 6-ти атмосфер, таким образом, чугунные радиаторы для них подходят. Но когда это 22-этажный дом, то для рабочего функционирования централизованных систем отопления потребуется 15 атмосфер. В таком случае нужны стальные или биметаллические отопительные приборы.

Специалисты не рекомендуют использовать при централизованном отоплении алюминиевые радиаторы — они не способны выдержать рабочего состояния водяного контура. Также профессионалы советуют владельцам недвижимости при проведении капитального ремонта в квартирах в случае замены батарей менять трубы развода теплоносителей на ½ или ¾ дюйма. Обычно они находятся в плохом состоянии и вместо них желательно ставить изделия экопласт.

Ссылка на основную публикацию
Adblock
detector